Combinaties (Deel I) - Cnp
    Combinations (part I)

ggetallen 3 cijfers (1)
ggetallen 3 cijfers (2)
ogetallen 3 cijfers (3)
ogetallen 3 cijfers (4)
ogetallen 2 of 3 cijfers
ogetallen 4 cijfers code
o \(C_n^p\) (n = 2021, p = 2)
o \(C_{99}^0+C_{99}^1+C_{99}^{99}\)
o \(C_{n+p}^{\;p}\)
o \(C_m^n=C_m^{n-1}\)
o \(C_n^0+C_n^1+C_n^n\)
r \(C_n^1+C_n^2+...C_n^n\)
r \(C_{99}^0+C_{99}^2+C_{99}^{98}\)
r \(C_{2004}^{1002} : C_{2003}^{1001}\)
r \(D_n^{p+1}: D_n^p\)
o \(C_8^1+C_8^2+ ... C_8^8\)
rr\(C_9^9+C_{10}^9+ ... +C_{99}^9\)
rr\(1.C_9^1+2.C_9^2 + ... + 9.C_9^9\)
o1+2+3+4+...2020 =
o\(C_n^0+2.C_n^1 + ... +2^n.C_n^n\)
o\(\frac{C_n^p}{V_n^p}=\frac1{24}\)
o\(C_{n+1}^2 = C_n^2 + ?\)
o= 14 400 ?
o\(\small \displaystyle \sum_{k=0}^{n}\; (-2)^k.\, C_{n}^{k}" \)
g\(C_{n}^{\, p}+C_{n}^{\, p} \)
g\(0\, !+C_{\,n}^{\, n}\)
o\(\small \displaystyle \sum_{k=0}^{10}C_{10}^{\: k}\: 0,\!08^k.\, 0,\!02^{10-k}\)
o\(\small \displaystyle \sum_{k=1}^{5}C_{5}^{k}\)
rr\(\small C_2^2+C_3^2+C_4^2 + ... + C_9^2\)
grechten tekenen (1)
grechten tekenen (2)
oaantal snijpunten (2)
oaantal snijpunten (4-3)
oaantal snijpunten (4-4)
oaantal snijpunten (4)
o# rechten
o# rechten én 3hoeken
gdriehoeken in zeshoek
odriehoeken maken (1)
odriehoeken maken (2)
odriehoeken maken (3)
odriehoeken maken (4)
odriehoeken maken (5)
oparallellogrammen (1)
oparallellogrammen (2)
odiagonalen zeshoek
odiagonalen achthoek
odiagonalen tellen
odiagonalen tienhoek
odiagonalen 20-hoek
gdeelverz. met a en b
gdeelverz. met 3 el.
odeelverz. met 7 of 8 el.
ocommitee van 5 pers. (1)
rcommitee van 5 pers. (2)
o nieuw
rkubus - hoekpunten new
orechten - driehoeken new



faculteiten
fundamentele principes v. h. tellen
permutaties
variaties
combinaties I
combinaties II
herhalingspermutaties
herhalingscombinaties
niet of moeilijk te klasseren





→ telling vanaf 15 aug 2024 ←