Berekenen van bepaalde integralen
10g\(\int_{-1}^{\,3} dx\) 11g\(\int_{\,0}^{\,1} e^x \,dx\)
12g\(\int_{\,1}^{\,e} \ln x \:dx\) 13g\(\int_{-\infty}^{0} 2^x \,dx\)
14g\(\int_{\,0}^{\frac{\pi}6} \sin 2x \:dx\) 15g\(\int_{-\infty}^{0} e^{2x} \,dx\)
16g\(\int_{\,1}^{+\infty} e^{-x} \,dx\) 17g\(\int_{,0}^{\ln 3} e^{2x} \,dx\)
18g\(\int_{-1}^{+1}\frac {2} {1\,+\,x^2}dx \) 19g\(\int_{-\infty}^{+\infty}\frac {dx} {e^x\,+\,e^{-x}} \)
20g\(\int_{-2}^{-1}\frac {1} {x^3}\, dx \)
30o\(\int_{1}^{3}\frac{2}{4x-3}\, dx \) 31o\(\int_{0}^{3}\frac{dx}{\sqrt{1+x}}\)
32o\(\int_{0}^{2\pi}\left |\sin x\right |\, dx \) 33o\(\int_{\pi}^{\frac{\pi}{2}}\left |\sin x\right |\, dx \)
34o\(\int_{0}^{3}\left |\ x-1 \right |\, dx \) 35o\(\int_{0}^{3}\left |\ x-2 \right |\, dx \)
36o\(\int_{0}^{\pi}\left |\ \cos x \right |\, dx \) 37o\(\int_{0}^{\frac{3\pi}{2}}\left |\ \cos x \right |\, dx \)
38o\(\small\int_{-\frac {\pi}2}^{+\frac {\pi}2} x.\cos x\,dx \) 39o\(\int_{-\infty}^{+\infty} e^{-\,\frac {x^2} {2}}\,dx \)
40o\(\int_{0}^{2}\:(1\!+\!|x|\,) \, dx \) 41r \(\int_{-3}^{+3}\left |\: f(x) \, \right |\, dx \)
42o\(\int_{0}^{2\pi} |\sin x|\; dx +\int_{-1}^{3}|x|\;dx \)
43r\(\int_{\pi}^{2\pi} \sin x\; dx +\int_{\pi}^{2\pi}|\sin x|\;dx \)
44ofoute bep.integraal
45of(π) uit f '(x) en f(0)=2
46o\(\int_{0}^{b} f(x)\; dx\)
47r\(\int_{-1}^{+1} \frac{1}{(1\,+\,x^2)(e^x\,+\,1)}\; dx\)
49r\(\int_{0}^{\frac{\pi}2} \frac{\cos x}{\cos x\:+\:\sin x}\; dx\)
50r\(\int_{1}^{3} \frac{\sqrt x}{\sqrt{4\,-\,x}\:+\,\sqrt x}\; dx\)
51r\(\int_{0}^{\pi} x.f(\sin x)\; dx\)
52r\(\int_{0}^{1} \frac{1}{\sqrt{-\ln x}}\; dx\)
53o\(\int_{a}^{\frac 1a}\, \frac{\ln x}{x}\; dx\)
54o\(\int_{1}^{2}\frac{\ln x}{x^2}\; dx\)
55r\(\int_{0}^{2}\frac{x^3}{x^3\,+\,(2-x)^3}\; dx\)
56r\(\int_{0}^{2}\frac{e^x\:-\:e^{-x}}{e^x\:+\:e^{-x}}\; dx\)
57r\(\int_0^\pi \frac {\cos^4x} {\cos^4x\:+\:\sin^4x} \;dx \) nieuw
58r\(\int_{0}^{\frac{\pi}{2}}\frac{1}{(1+\,x.\tan x)^2}\; dx \) nieuw
59r\(\int_{0}^{4}\frac{1}{x\;+\,\sqrt{x}}\; dx\) nieuw
60r\(\int_{0}^{\frac12}x.e^{2x}\,dx\) nieuw
61r\(\int_{0}^{e-1}\frac{x\,-\,1}{x\,+\,1}\,dx\) nieuw
62o\(\int_{0}^{+\infty}\frac{x}{\left(x\,+\,1\right)^4}dx\) nieuw


Onbepaalde integralen

  Indefinite integrals




Bepaalde integralen
  - enkel berekenen -

  Definite integrals, only calculating


Bepaalde integralen
- berekenen van oppervlaktes -

  Definite integrals - calculation of areas


Bepaalde integralen
- berekenen inhouden + VARIA

  Definite integrals : volumes + VARIA






→ telling vanaf 15 aug 2024 ←