|
A. 1 |
B. |
C. π |
D. 2π |
E. 4π |
[ 5-8750 - op net sinds 8.11.2022-(E)-2.11.2023 ]
Translation in E N G L I S H
|
A. 1 |
B. |
C. π |
D. 2π |
E. 4π |
Oplossing - Solution
We splitsen eerst de bepaalde integraal in de volgende twee integralen :
INT =
\(
\int_0^\frac{\pi}{2} \frac {\cos^4x} {\cos^4x+ \sin^4x} \;dx +
\int_\frac{\pi}{2}^{\pi} \frac {\cos^4x} {\cos^4x+ \sin^4x} \;dx\\
\)
In de tweede integraal passen we de volgende substitutie toe :
\(y = x - \frac {\pi} {2} \quad (\scriptsize nieuwe\;ondergrens\;0,\; nieuwe\;bovengrens\;\frac {\pi}{2}, \; dy = dx)\\
\cos^4(y+\frac{\pi}{2})=\sin^4(\frac{\pi}{2}-y-\frac{\pi}{2}) =\sin^4(-y)=\sin^4 y\\
\sin^4(y+\frac{\pi}{2})=\cos^4(\frac{\pi}{2}-y-\frac{\pi}{2}) =\cos^4(-y)=\cos^4 y\\
\)
De tweede integraal wordt dan :
\(
\int_0^\frac{\pi}{2} \frac {\sin^4 y} {\sin^4y+ \cos^4 y} \;dy \overset{!!}{=}\int_0^\frac{\pi}{2} \frac {\sin^4 x} {\sin^4 x+ \cos^4 x} \;dx
\) zodat
INT =
\( \int_0^\frac{\pi}{2}\frac {\cos^4x} {\cos^4x+ \sin^4x} \;dx + \int_0^\frac{\pi}{2} \frac {\sin^4x} {\cos^4x+ \sin^4x} \;dx \\
= \int_0^\frac{\pi}{2}\frac {\cos^4 x + sin^4 x} {\cos^4x+ \sin^4x} \;dx = \int_0^\frac{\pi}{2} 1\;dx = \frac {\pi }{2}
\)