Moeilijke bepaalde integraal
A.  2oppi
B.  pi/4
C.  pi/2
D.  π
E.  2π
A    B    C    D    E

[ 6-8752 - op net sinds 13.11.2022-(E)-2.11.2023 ]

Translation in   E N G L I S H


A.  
B.  
C.  
D.  
E.  

Oplossing - Solution

\( INT = \int_{0}^{\frac{\pi}{2}}\frac{1}{(1\!+x.\tan x)^2}\: dx= \int_{0}^{\frac{\pi}{2}}\frac{\cot^2x} {(\cot x + x)^2}\: dx\\ Stel \; \cot x + x = y\\ \scriptsize \quad (x\to 0\;\;k.o.m.\;y\to +\infty \quad x\to \frac{\pi}{2}\;k.o.m.\;y=\frac{\pi}{2})\\ \Rightarrow \left( - \; \frac {1}{\sin^2 x} + 1 \right) dx=dy\\ \Rightarrow \frac {\sin^2x\,-\: 1}{\sin^2x }dx=dy\\ \Rightarrow \cot^2x\;dx = -\:dy\\ INT= \int_{+\infty}^{\frac{\pi}{2}} \left( -\;\frac{1}{y^2}\right) \; dy=\left [ \frac 1y \right ]_{+\infty}^{\frac{\pi}{2}}=\frac{1}{\frac{\pi}{2}}=\frac{2}{\pi}\approx 0,63662 \)
gricha