De hele kolom niet zichtbaar ? Probeer dan eens Ctrl-min
Vierkantswortels en Kwadraten
Square roots and squares
10g \(\small \sqrt 8 + \sqrt{18}\) 11g laatste cijfer kwadraat
12g \(\small \sqrt 2 × \sqrt 2\) 13g kwadraat van \(\frac{\sqrt{2}}{2}\)
14g \(\small x.\sqrt x\) 15g \(\small \sqrt x +\!\sqrt x = \sqrt x.\sqrt x\)
16g \(2 < \sqrt 3 < 3\) 17g vierkantswortel van 72
18g \(2\sqrt3 + 2\sqrt3\) 19g \(\frac {1} {3}\;van\;\;?\;\;is\; \sqrt3 \)
20g \(\sqrt 2 : (-\frac{1}{\sqrt2})\) 21g \(2.3.\sqrt2.\sqrt6 \)
22g \((1\!+\!\sqrt2):(1\!-\!2)\) 28g \(\frac{1}{\sqrt2}\!+\!\frac{1}{\sqrt2} \) JWO2022
24g kwadraat van x−4 25g pos. vierkantsw. van 45
26g {X kwadraat van Y 27g benaderen wortelvorm
28g \(\frac ac\!\!\cdot\!\!\frac bc\!=\! \frac {a.b}{c}|\small \frac ac\!+\! \frac bc\!=\! \frac {a+b}{c}|\small \frac ab\!=\!\frac{a^2}{b^2}\)
30o \(\frac {\sqrt{21}\,+\,\sqrt6} {\sqrt3} \) 31o \(\frac {4\,+\,\sqrt{32}} {8} \)
32o \(\frac {2\,+\,2\sqrt5} {2} \) 33o \(\frac {3\,+\,3\sqrt6} {3} \)
34o \( \frac {6\,+\,\sqrt{20}} {2} \) 35o \( \frac {x} {\sqrt x}+ \frac {\sqrt x}{x} \)
36o \(\frac {x} {\sqrt x}+x \) 37o \(\frac {-4\,-\,\sqrt{32}} {-4} \)
38o \(\frac {\sqrt2} {2}+\sqrt2 \) 39o \(\frac {\sqrt3} {3} + \frac {2} {\sqrt3} \)
40o \(\sqrt{4^4} \) 41o \(\sqrt{16^{16}} \)
42o \(\sqrt{0,36^{\,3}} \) 43o \(\sqrt{16^{36}} \)
44o \(\sqrt{16+\sqrt{16}}\: \approx \) 45o \((\sqrt2\!+\!\sqrt8)^2 \)
46o \((x^2\!-\,9)^2 \) 47o \( (\sqrt5 - 2)^2\)
48o \((5x)^2+5x^2 \) 49o \(3.(-1).(3\sqrt3)^2\)
50o \(\sqrt2.\sqrt3.\sqrt8 \) 51o \( \small 2\!+\!\sqrt2+\sqrt2\!+\sqrt2.\sqrt2\)
52o \(\small \sqrt1.\sqrt2.\sqrt3.\sqrt4\) 53o \(\frac{\sqrt2}{2}.\frac{\sqrt2}{2}+\frac{\sqrt2}{2}+\frac{\sqrt2}{2} \)
54o \((6\sqrt3)^2 - (3\sqrt2)^2 \) 55o \(3\sqrt{27}-2\sqrt{12}+2\sqrt{75}\)
56o f o u t ? 57o alle vijf juist ?
58o 2 delen door\(\sqrt2\) 59o helft van kwadraat
60o 3 gelijkheden ?_1 61o 3 gelijkheden ?_2
62o 3 gelijkheden ?_3 63o \(\text{l a t e r} \)
64o 4 gelijkheden ?_1 \) 65o 4 gelijkheden ?_2
66o 5 gelijkheden ?_1 67o 5 gelijkheden ?_2
68o 5 gelijkheden ?_3 69o 5 gelijkheden ?_4
70o 5 gelijkheden ?_5 71o \(\text{l a t e r } \)
72o wortel schatten 73o kan berekend worden ?
74o kleinste getal zkn 75o grootste getal zoeken
76o \((2\sqrt{2a})^2\) 77o \( \small \sqrt x+\!\sqrt x+\!\sqrt x=\sqrt x.\sqrt x.\sqrt x\)
78o \(\sqrt a > a\;\;?\) 79o \(\small \sqrt{5^5+5^5+5^5+5^5+5^5} \)
80o \( (\sqrt{20}+\sqrt5) :\! \sqrt5 \) 81o \(\sqrt[3]{27}+\sqrt{36+64}+\sqrt{36.64} \)
82o \(\ a^2 = -3 \Rightarrow \;? \) 83o (88+88)+(88−88)+(88.88)+(88:88)
84o helft van\(\sqrt{32} 85o helft van een vierkantsw.
86o vierkantsw. geh. getal 87o \(\sqrt{2^2.6}-\sqrt{16}-\sqrt6\)
88o \(\text{l a t e r }\) 89o \( (x-\!1)^2\,+\,..?..\,= (x + 1 )^2 \)
90r \( \sqrt{a^2.b^2}\) 91r \(\small (1+3\sqrt2)^2-(1-3\sqrt2)^2\)
92r \(\sqrt{(-x)^2}\) 93r \(\small (\sqrt{10+\sqrt{75}} - \sqrt{10+\sqrt{75}})^2 \)
94r \(\ \sqrt 5 \:\; \nabla \:\,\sqrt 5 \) 95r \(\sqrt{36+64}+\!\sqrt{36.64}+\sqrt{36}+\!\sqrt{64}\)
96r \((3+2\sqrt2)^2 \) 97r \((\sqrt3+1)^4+(\sqrt3-1)^4 \)
98r \((2\sqrt3 -5)^2\) 99r \(\sqrt{3\!+\!\sqrt5}.\sqrt{3\!-\!\sqrt5} \)
A0r \(\sqrt{6-4\sqrt2}\) A1r \(\frac {1} {2\,+\,\sqrt{3}} + \frac {2} {\sqrt{3}\,-\,1}\)
A2r \(\sqrt{6+4\sqrt2}\) A3r \(\frac {1} {1-\sqrt{2022}} + \frac {1} {1+\sqrt{2022}}\)(J)
A4r \((2\sqrt2+\sqrt3)^2\) A5r \(\bigl[4+\!\sqrt7)-(4\!-\!\sqrt7\bigr]^2 \)
A6r \(3\,(2\sqrt3\,.\,4\sqrt5)\) A7r \(2 < \sqrt x < 3 \;\; en \;\; 1 < \sqrt x < 2 \)
A8r \(\sqrt[4]{1 miljoen} \) A9r \(\small \sqrt6+\!2\leftrightarrow 2\sqrt2+\!\sqrt3\leftrightarrow \sqrt7\!+\!2\)
B0r \(\sqrt5 + \sqrt{45}=\sqrt n \) B1r \(\scriptsize \sqrt{ 3^{n-4}\!+3^{n-3}\!+3^{n-2}\!+3^{n-1}\!+3^n}=33\)
B2r 30 keer vx B3r meerdere vierkantswortels
B4r \(\large \frac {\sqrt2} {\frac32}-\frac{\frac{\sqrt2}{3}}{2} \) B5r \(\frac 1x + x = 3\\\frac{1}{x^2}+x^2 =\;? \)
B6r \((x - \frac 1x)^2 \) B7r \(2.(\,3.\sqrt{18}\,)(\,2.\sqrt3\,) \)
B8r \(\sqrt{4-\sqrt{12}}\) nieuw B9o \(\scriptsize\sqrt n+\!\sqrt n +\! \sqrt n =\sqrt n.\sqrt n.\sqrt n\) nieuw
90r \(\large\frac{\sqrt{10}\,-\,\sqrt5}{\sqrt{10}\,+\,\sqrt5}\) new
91r \(\small\sqrt{e^2\!-\!6e\!+\!9}+\sqrt{e^2\!+\!6e\!+\!9}\) new
92r\(\small5^x\!+\!5^{-x}\!= 3 \Rightarrow 25^{x}\!+\!25^{−x}=?\) new
93okwadraat van −(m² − 4) new


Meer oefeningen met
vierkantswortels : zie
4de jaar - vierkantswortels




→ telling vanaf 17 aug 2024 ←