De hele kolom niet zichtbaar ? Probeer dan eens Ctrl-min
    n-de wortels
10g\(\sqrt[3]{8^6}\) 11g\(\sqrt[3]{8\; miljard}\)
12g\(\sqrt[4]{128}\; \) 13g\( \sqrt[3]{0,008} \)
14g √ √ √ 7 15g √ √ √ 5
16g n-dewortels 17g een reëel getal ?
18g \( \sqrt[5]{\sqrt a} \) 19g \(x^3\cdot \sqrt[3]{x}\)
20g \((\sqrt{\sqrt[3]{a}}\,)^{60}\) 21g \( \sqrt[6]{1000} \)
22g e−x.e−x 23g ex. e−x
24g0,25−0,25 25ggeldig voor neg.getallennieuw
30o\(\sqrt [5]{\sqrt {13}} \) 31o\(\sqrt 2 \leftrightarrow\sqrt[3]{3} \leftrightarrow\sqrt[4]{4}\)
32oallen gelijk ? 33o\( \small \sqrt {x^3}\!\leftrightarrow \sqrt[3]{x}\leftrightarrow x.\sqrt x\leftrightarrow \! \frac {x} {\sqrt x} \)
34o\(\frac {1} {\sqrt [5]{4}} \) 35o\( \sqrt[3]{135}-\sqrt[3]{5}-\sqrt[3]{40}\) new
36o\(\sqrt[3]{8}.\sqrt[2]{8} \) 37o\( \small \sqrt [3]{2} \!\leftrightarrow\!\sqrt[4]{3}\!\leftrightarrow\!\sqrt [12]{12}\!\leftrightarrow\!\sqrt[24]{240}\)
38o\(\sqrt[3]{8}.\sqrt{8} \) 39on-dewortels (2)
40o\(\sqrt [4]{a.\sqrt a} \) 41o\( \small derde\;macht\; \normalsize \sqrt 3 \)
42o3 tot − 1/3 43o\( \sqrt [3]{n.\sqrt n} \)
44o\(\sqrt [3]{2.\sqrt 2} \) 45o\(\sqrt [6]{3.\sqrt 3} \)
46o\(\sqrt[3]{a\, \sqrt[3]{a}}\) 47o\(\sqrt [6]{2}.\sqrt [3]{2} \)
48o\(\large \frac{1}{\sqrt[3]{a\, b^2}}\) 49o\(\sqrt[3]{a^3\cdot b^3\cdot c^3}\)
50odrie keer = ? 51o\(\frac{1}{\sqrt{0,5}}\quad\sqrt{2}\quad\sqrt[4]{4}\)
52o\(\small \sqrt 2\!\leftrightarrow\!\sqrt [4]{4}\!\leftrightarrow\!\sqrt [6]{8} \) 53o\(\sqrt[3]{3},\; \sqrt[4]{4},\; \sqrt[6]{7},\; \sqrt[12]{60}\)
54o\(\frac {\sqrt [6]{x^5y^4}} {\sqrt [3]{xy^2}} \) 55ohet vreemde eendje
56o\(\sqrt [3]{2.\sqrt 2} \) 57ohoeveel correct ?
58o\(\sqrt{x}\cdot\!\sqrt[3]{x}=2^{30}\) 59o\(\sqrt[3]{k(k^2+3k+3)+1}\) nieuw
60r\(\frac{\sqrt[3]{3}\;+\;3}{\sqrt[3]{9}\;+\;1}= \) 61r\(\sqrt[3]{9+\sqrt{73}}\cdot \sqrt[3]{9-\sqrt{73}}\)
62r54 − ∛2 63rwelke correct ?
64r4x²y .√2xy 65r\(\sqrt[4]{x-\sqrt{40}}\cdot \sqrt[4]{x+\sqrt{40}}=3\)
66r\(\sqrt[6]{32}\quad\sqrt[3]{6}\quad\sqrt[4]{11}\)
67r\(\sqrt[4]{3}\quad \sqrt[6]{5}\quad \sqrt[7]{8}\)
68rwelke is de kleinste ?
69r\(\left [ \sqrt x \right ] + \left [ \sqrt[3]{x} \right ] = 7\) nieuw




→ telling vanaf 16 aug 2024 ←