(Enkel) D E T E R M I N A N T E N
10odet uit det
11odet met 3 punten
12odeterm. met kans
13otekenverandering det.
14g\( \scriptsize \left | \begin{matrix} \sqrt{3}-2 & \sqrt2\\ -\sqrt8 & \sqrt3+2 \end{matrix} \right |= \)
15g\(\scriptsize \begin{vmatrix} x+y& x-y \\ x-y& x+y \\ \end{vmatrix}\) berekenen
16g\(\scriptsize \begin{vmatrix} 1-x&1\\1&-x\\ \end{vmatrix}\) met vkvgl. nieuw
17o\(\scriptsize \begin{vmatrix}x&y\\y-z&x-z\\\end{vmatrix}\) new
18o\(\scriptsize \begin{vmatrix}(x+y)^2 &(x-y)^2 \\x+y & x-y \\\end{vmatrix}\)
19o\(\scriptsize \begin{vmatrix}\sec \alpha & \tan \alpha \\\tan \alpha &\sec \alpha \\\end{vmatrix}\)
20o\(\tiny \begin{vmatrix}1&a&b\\1&b&a\\1&c&c\\\end{vmatrix}\) ontbinden
21o\(\tiny\begin{vmatrix} x&\!y&\!y\\xy&\!x&\!xy\\y&\!xy&\!y\\\end{vmatrix} \) ontbinden
22o\(\tiny \begin{vmatrix}a&1&1\\1&a&1\\1&1&a\\\end{vmatrix} \) ontbinden
23r \(\tiny \begin{vmatrix}a&a&b+1\\b&1&a\\2&b+1&1\\\end{vmatrix}\) ontbinden
24o\(\scriptsize \begin{vmatrix} 1& n& n(n+1)\\ 1& n+1& (n+1)(n+2)\\ 1& n+2& (n+2)(n+3)\\\end{vmatrix} \)
25o\(\tiny \begin{vmatrix}2a&b&1\\a+b&a&1\\a&a+b&1\\\end{vmatrix} \)
26odeler van \(\tiny \begin{vmatrix}1&x&6\\x&3&6\\2&4&6x\\\end{vmatrix}\)
27odeler van \(\tiny \begin{vmatrix}1&x&1\\2x&2&2\\3&3&3x\\\end{vmatrix}\)
28owelke determinant = 0 ?
29o\(\scriptsize \begin{vmatrix}\begin{bmatrix}+1 &-1 \\-1 &-1 \\\end{bmatrix}^5\end{vmatrix} \)
30o\(\scriptsize det \begin{bmatrix}2&4\\k&-2\\\end{bmatrix}=1\)
31o 0111 1011 1101 1110
32o \(\small\boldsymbol{\begin{vmatrix}\sin a & 1\!+\!\cos 2a & \sin^2 a \\\sin b & 1\!+\!\cos 2b & \sin^2 b \\\sin c & 1\!+\!\cos 2c & \sin^2 c \\\end{vmatrix}}\)
33o
34o
35odet. berekenen (3e orde)
36otwee det.n berekenen



2 × 2  en  n × m stelsels

  2x2 systems of equations


(enkel) Matrices

  (only) matrix


(enkel) Determinant

  (only) determinant


V A R I A

  V A R I A


Stelsels uit het 4de jaar




→ telling vanaf 14 aug 2024 ←