|
Voor een willekeurige driehoek noemen we h1, h2, h3 de lengtes
van de drie hoogtelijnen, p de halve omtrek en S de oppervlakte. Dan is \(\boldsymbol{\frac {1} {h_1}+\frac {1} {h_2} +\frac {1} {h_3} }\) gelijk aan |
A. \(\boldsymbol{\frac {p} {S} }\) |
|---|---|
| B. \(\boldsymbol{\frac {2p} {S} }\) | |
| C. \(\boldsymbol{\frac {2} {p} }\) | |
| D. \(\boldsymbol{\frac {S} {p} }\) | |
| E. \(\boldsymbol{\frac {S} {p^3} }\) |
[ vwo26-(2j25) - op net sinds 16.12.2022-()- ]
Deze vraag (25ste), werd gesteld in januari 2011 tijdens de tweede ronde van de
10de Junior Wiskunde Olympiade (3de en 4de jaars).
17% juiste antwoorden - 22% foute antwoorden
Van de 30 vragen was dit de vraag met de meeste blanco's : 61%
|
IN CONSTRUCTION |
A. |
|---|---|
| B. | |
| C. | |
| D. | |
| E. |