Bgtan 1 + Bgtan 2 + Bgtan 3
is gelijk aan
|
A. 1 |
B. Bgtan 6 |
C. π |
D. |
E. 0 |
[ 5-8680 - op net sinds 3.5.2021-(E)-4.11.2023 ]
Translation in E N G L I S H
atan(1) + atan(2) + atan(3)
is gelijk aan
|
A. 1 |
B. atan(6) |
C. π |
D. |
E. 0 |
Bgtan x = atan (x) = arctan (x) = tan−1 x
Oplossing - Solution
\(\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta} {1-\tan\alpha.\tan\beta}\;is\\
\tan\;(Bgtan\:2 + Bgtan\:3)=\frac{2\,+\,3}{1-2.3}=\frac{5}{-5}=-1\\
Dus\;\;Bgtan\:2+Bgtan\:3=-\frac{\pi}{4}+k.\pi\\
Daar\;\;0 < Bgtan\:2,Bgtan\:3 < \frac{\pi}{2}\\
moet\;de\;som\;tussen\;0\;en\;\pi\:liggen\;zodat\;k=1.\\
M.a.w.\;Bgtan\:2+\;Bgtan\:3=-\frac{\pi}{4}+\pi=\frac34\pi\\
Daar\;\;Bgtan\:1\;=\;\frac{\pi}{4}\;\;is\;dus\\
\:Bgtan\:1+\:Bgtan\:2\;+\;Bgtan\:3=\frac{\pi}{4}+\frac34\pi=\pi \)