Bgtan 1 + Bgtan 2 + Bgtan 3

is gelijk aan
A.  1
B.  Bgtan 6
C.  π
D.  pi/2
E.  0
A    B    C    D    E

[ 5-8680 - op net sinds 3.5.2021-(E)-4.11.2023 ]

Translation in   E N G L I S H

atan(1) + atan(2) + atan(3)

is gelijk aan
A.   1
B.   atan(6)
C.   π
D.   pi/2
E.   0
Bgtan x = atan (x) = arctan (x) = tan−1 x

Oplossing - Solution

\(\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta} {1-\tan\alpha.\tan\beta}\;is\\ \tan\;(Bgtan\:2 + Bgtan\:3)=\frac{2\,+\,3}{1-2.3}=\frac{5}{-5}=-1\\ Dus\;\;Bgtan\:2+Bgtan\:3=-\frac{\pi}{4}+k.\pi\\ Daar\;\;0 < Bgtan\:2,Bgtan\:3 < \frac{\pi}{2}\\ moet\;de\;som\;tussen\;0\;en\;\pi\:liggen\;zodat\;k=1.\\ M.a.w.\;Bgtan\:2+\;Bgtan\:3=-\frac{\pi}{4}+\pi=\frac34\pi\\ Daar\;\;Bgtan\:1\;=\;\frac{\pi}{4}\;\;is\;dus\\ \:Bgtan\:1+\:Bgtan\:2\;+\;Bgtan\:3=\frac{\pi}{4}+\frac34\pi=\pi \)
gricha