1ste manier :
\(\displaystyle\lim_{x\to 0}\:\frac{\cos ax\:-\:1}{x^2}=\displaystyle\lim_{x\to 0}\:\frac{(\cos ax\:-\:1)(\cos ax+1)}{x^2(\cos ax+1)}=\displaystyle\lim_{x\to 0}\:\frac{\cos^2ax\:-\:1}{x^2(\cos ax+1)}\\=\displaystyle\lim_{x\to 0}\:\frac{-\sin^2ax}{x^2(\cos ax+1)}=-a^2\displaystyle\lim_{x\to 0}\:\frac{\sin ax.\sin ax}{ax.ax}.\displaystyle\lim_{x\to 0}\:\frac{1}{\cos ax+1}\\=-a^2.1.1.\frac{1}{1+1}=-\frac{a^2}{2}\)
2de manier : met de regel van de L'Hospital