A.     1
B.   1op2 a2
C.   \(\boldsymbol{- \,\large \frac {8}{a^2}} \)
D.    1op2
E.   1op2 a2
A    B    C    D    E

[ 5-7240 - op net sinds 22.4.13-(E)-21.11.2024 ]

Translation in   E N G L I S H


A.    1
B.  1op2 a2
C.  \(- \,\large \frac {8}{a^2} \Large \)
D.  1op2
E.  1op2 a2

Oplossing - Solution

1ste manier :
\(\displaystyle\lim_{x\to 0}\:\frac{\cos ax\:-\:1}{x^2}=\displaystyle\lim_{x\to 0}\:\frac{(\cos ax\:-\:1)(\cos ax+1)}{x^2(\cos ax+1)}=\displaystyle\lim_{x\to 0}\:\frac{\cos^2ax\:-\:1}{x^2(\cos ax+1)}\\=\displaystyle\lim_{x\to 0}\:\frac{-\sin^2ax}{x^2(\cos ax+1)}=-a^2\displaystyle\lim_{x\to 0}\:\frac{\sin ax.\sin ax}{ax.ax}.\displaystyle\lim_{x\to 0}\:\frac{1}{\cos ax+1}\\=-a^2.1.1.\frac{1}{1+1}=-\frac{a^2}{2}\)
2de manier : met de regel van de L'Hospital
gricha