1ste manier : (zonder de regel van de l'Hospital)
\(\displaystyle\lim_{x\to 4}\frac{x-4}{\frac{1}{\sqrt x}-\frac{1}{2}}=\displaystyle\lim_{x\to 4}\frac{x-4}{\frac{2-\sqrt x}{2\sqrt x}}=\displaystyle\lim_{x\to 4}\frac{2\sqrt x(x-4)}{2-\sqrt x}=\\\displaystyle\lim_{x\to 4}\frac{2\sqrt x(x-4)(2+\sqrt x)}{(2-\sqrt x)(2+\sqrt x)}=\displaystyle\lim_{x\to 4}\frac{2\sqrt x(x\!-\!4)(2+\!\sqrt x)}{4+x}\!\\=\!-2\displaystyle\lim_{x\to 4}\left(\sqrt x(2+\!\sqrt x)\right)\!=\!-2(2(2\!+\!2))=-2.8=-16\)
2de manier : (met de regel van de l'Hospital)