gricha - v7060 - 31.7.2022
Als je de kromme
 y2 = x4 + x5
wentelt rond de x-as, ontstaat er links van de y-as een peervormig lichaam.
De inhoud ervan is
A.   \(\boldsymbol{\frac {11\pi} {30} }\)
B.   \(\boldsymbol{\frac {\pi} {15} }\)
C.   \(\boldsymbol{\frac {\pi} {30} }\)
D.   \(\boldsymbol{\frac {11\pi} {15} }\)
E.   \(\boldsymbol{\;\pi }\)
A    B    C    D    E

[ 6-7060 - op net sinds 30.11.14-()-28.7.2024 ]

Translation in   E N G L I S H

IN CONSTRUCTION

Oplossing - Solution

Snijpunten met de x-as (nulwaarden) : x4 + x5 = 0 ⇔ x4(1 + x) = 0 ⇔ x = 0   ∨   x = − 1
\(\boldsymbol{\int_{-1}^{0}\pi y^2dx=\pi\int_{-1}^{0}\:(x^4+x^5)\,dx=\pi\left (\left [ \frac{x^5}{5} \right ]_{-1}^{0}+ \left[ \frac{x^6}{6} \right ]_{-1}^{0}\right)=\pi\left ( \frac{1}{5}- \frac{1}{6}\right )=\frac{\pi}{30} }\)
gricha