De limiet
is gelijk aan
|
A. 1 |
B. 2 |
C. 0 |
D. |
E. |
[ 5-6955 - op net sinds 18.3.13-(E)-7.11.2024 ]
Translation in E N G L I S H
The limit
is equal to
|
A. 1 |
B. 2 |
C. 0 |
D. |
E. |
Oplossing - Solution
1ste manier : zonder de regel van de l'Hospital
\(\displaystyle\lim_{x\to0}\frac{\sqrt{4+x}-\sqrt{4-x}}{x}=\displaystyle\lim_{x\to0}\frac{\left(\sqrt{4+x}-\sqrt{4-x}\right)\left(\sqrt{4+x}+\sqrt{4-x}\right)}{x\left(\sqrt{4+x}+\sqrt{4-x}\right)}\\=\displaystyle\lim_{x\to0}\frac{\left(4+x\right)-\left(4-x\right)}{x\left(\sqrt{4+x}+\sqrt{4-x}\right)}\;=\displaystyle\lim_{x\to0}\frac{2x}{x\left(\sqrt{4+x}+\sqrt{4-x}\right)}\\=\displaystyle\lim_{x\to0}\frac{2}{\left(\sqrt{4+x}+\sqrt{4-x}\right)}=\frac{2}{\sqrt4+\sqrt4}=\ldots \)
2de manier : met de regel van de l'Hospital
\(\displaystyle\lim_{x\to0}\frac{\sqrt{4+x}-\sqrt{4-x}}{x}\left(=\frac{0}{0}\right)\buildrel H\over=\lim_{x\to0}\frac{\frac{1}{2\sqrt{4+x}}-\frac{1}{2\sqrt{4-x}}\left(-1\right)}{1}\\=\displaystyle\lim_{x\to0}\left(\frac{1}{2\sqrt{4+x}}+\frac{1}{2\sqrt{4-x}}\right)\;=\frac{1}{2\sqrt4}+\frac{1}{2\sqrt4}=\frac{1}{4}+\frac{1}{4}=\ldots \)