is gelijk aan
|
A. + |
B. + |
C. 3 |
D. 9 |
E. + |
[ 3-6649 - op net sinds 11.10.16-(E)-8.11.2024 ]
Translation in E N G L I S H
is equal to
|
A. + |
B. + |
C. 3 |
D. 3 |
E. + |
Oplossing - Solution
1ste manier :
\(\frac{\sqrt{21}+\sqrt6}{\sqrt3}=\frac{\sqrt{21}}{\sqrt3}+\frac{\sqrt6}{\sqrt3}=\sqrt7+\sqrt2\)
2de manier :
\(\frac{\sqrt{21}+\sqrt6}{\sqrt3}=\frac{(\sqrt{21}+\sqrt6)\sqrt3}{\sqrt3.\sqrt3}=\frac{\sqrt{21}.\sqrt3+\sqrt6.\sqrt3}{3}=\frac{\sqrt7.\sqrt3.\sqrt3+\sqrt2.\sqrt3.\sqrt3}{3}\\=\frac{3.\sqrt7+3\sqrt2}{3}=\sqrt7+\sqrt2 \)
3de manier :
\(\frac{\sqrt{21}+\sqrt6}{\sqrt3}=\frac{\sqrt{7.3}+\sqrt{2.3}}{\sqrt3}=\frac{(\sqrt7+\sqrt2)\sqrt3}{\sqrt3}=\sqrt7+\sqrt2\)
4de manier :
\(\frac{\sqrt{21}+\sqrt6}{\sqrt3}=\frac{\sqrt{21}}{\sqrt3}+\frac{\sqrt6}{\sqrt3}=\frac{\sqrt{21}\sqrt3}{\sqrt3.\sqrt3}+\frac{\sqrt6.\sqrt3}{\sqrt3.\sqrt3}=\frac{\sqrt{63}}{3}+\frac{\sqrt{18}}{3}\\=\frac{3\sqrt7}{3}+\frac{3\sqrt2}{3}=\sqrt7+\sqrt2\)