| 
  
Het product cos 15° . cos 30° . cos 75° is gelijk aan 
 | 
    A.   \(\frac{3}{8}\) | 
| B.   \(\frac{\sqrt3}{2}\) | 
| C.   \(\frac{\sqrt3}{4}\) | 
| D.   \(\frac{1}{4}\) | 
| E.   \(\frac{\sqrt3}{8}\) | 
[ 5-5711 - op net sinds 13.9.13-(E)-13.6.2025 ]
Translation in   E N G L I S H  
The product
  (cos 15°)(cos 30°)(cos 75°)
  is equal to  
 | 
    A.   \(\frac{3}{8}\) | 
| B.   \(\frac{\sqrt3}{2}\) | 
| C.   \(\frac{\sqrt3}{4}\) | 
| D.   \(\frac{1}{4}\) | 
| E.   \(\frac{\sqrt3}{8}\) | 
 
Oplossing - Solution
1ste manier :
cos 15°.cos 30°.cos 75° = sin 15°.cos 15°.cos 30°
= ½.(2 sin 15°.cos 15°).cos 30°  
= ½.sin 30°.cos 30° = ¼.2. sin 30°.cos 30°
= ¼ .sin60° = \(\frac 14.\frac {\sqrt3} {2}=... \)
 
2de manier : (gebruik makend van één van de 4 formules van SIMPSON)
cos 15°.cos 30°.cos 75° = ½.cos30°(2cos 15°.cos 75°)
= ½.cos 30°[cos(15° − 75°) + cos(15° + 75°)]
= ½.cos 30°.[cos(− 60°) + cos 90°]
= ½.cos 30°. ½= ¼ cos 30° = \(\frac14.\frac {\sqrt3} {2}=... \)