Uit de verzameling { 1, 2, 3, 4, ... , n−1 , n } kiest men willekeurig twee gehele getallen. Dan is kans dat ze op elkaar volgen |
A. \(\large\boldsymbol{\frac {1} {n} }\) |
---|---|
B. \(\large\boldsymbol{\frac {2} {n} }\) | |
C. \(\large\boldsymbol{\frac {2} {n\,-\,1} }\) | |
D. \(\large\boldsymbol{\frac {4} {n\,-\,1} }\) | |
E. \(\large\boldsymbol{\frac {1} {n\,-\,1} }\) |
[ 6-5327 - op net sinds 18.7.14-(E)-30.10.2023 ]
From the set { 1, 2, 3, 4, ... , n−1 , n } we choose two integers. What is the probability that the are consecutive ? |
A. \(\boldsymbol{\frac {1} {n} }\) |
---|---|
B. \(\boldsymbol{\frac {2} {n} }\) | |
C. \(\boldsymbol{\frac {2} {n\,-\,1} }\) | |
D. \(\boldsymbol{\frac {4} {n\,-\,1} }\) | |
E. \(\boldsymbol{\frac {1} {n\,-\,1} }\) |