Uit de verzameling
{ 1, 2, 3, 4, ... , n−1 , n }
kiest men willekeurig twee gehele getallen. Dan is kans dat ze op elkaar volgen
A.    \(\large\boldsymbol{\frac {1} {n} }\)
B.    \(\large\boldsymbol{\frac {2} {n} }\)
C.  \(\large\boldsymbol{\frac {2} {n\,-\,1} }\)
D.  \(\large\boldsymbol{\frac {4} {n\,-\,1} }\)
E.  \(\large\boldsymbol{\frac {1} {n\,-\,1} }\)
A    B    C    D    E

[ 6-5327 - op net sinds 18.7.14-(E)-30.10.2023 ]

Translation in   E N G L I S H

From the set
{ 1, 2, 3, 4, ... , n−1 , n }
we choose two integers.
What is the probability that the are consecutive ?
A.    \(\boldsymbol{\frac {1} {n} }\)
B.     \(\boldsymbol{\frac {2} {n} }\)
C.   \(\boldsymbol{\frac {2} {n\,-\,1} }\)
D.   \(\boldsymbol{\frac {4} {n\,-\,1} }\)
E.   \(\boldsymbol{\frac {1} {n\,-\,1} }\)

Oplossing - Solution

(n − 1) / Cn2 = [2(n − 1)] / [n(n − 1)] = 2 / n
gricha