De oplossing (of één van de oplossingen) van de logaritmische vergelijking
log3 (2x+1) + log3 (x–1) = 2 is
A.   \(\frac23\)
B.   \(\frac32\)
C.   \(3\)
D.   \(\frac83\)
E.   \(\frac52\)
    A    B    C    D    E

[ 6-4144 - op net sinds 2.5.2024-(E)- ]

Translation in   E N G L I S H

IN CONS
IN CONSTR
IN CONSTRUC
IN CONSTRUCTI
IN CONSTRUCTION
A.  
B.  
C.  
D.  
E.  

Oplossing - Solution

log3 (2x+1) + log3 (x–1) = 2   BV. x > 1
log3 [(2x+1). (x–1)] = 2
log3 [2x² − x − 1] = 2
2x² − x – 1 = 9
2x² − x – 10 = 0
(x + 2)(2x – 5) = 0
x = −2  ∨  x = 5/2
−2 te verwerpen wegens de B.V.
GWB