5 jongens en 3 meisjes moeten in 2 groepen van 4 personen verdeeld worden.
Elk van beide groepen
moet minstens 1 meisje tellen.
Op hoeveel manieren kan die verdeling gebeuren ?
|
A. 10 |
B. 15 |
C. 20 |
D. 30 |
E. 35 |
[ 6-3874 - op net sinds 27.10.07-(E)-3.11.2023 ]
Translation in E N G L I S H
In how many ways can a group of 8 people
(5 boys and 3 girls) be split into two
groups containing 4 persons each.
Each group must count at least one girl.
|
A. 10 |
B. 15 |
C. 20 |
D. 30 |
E. 35 |
Oplossing - Solution
Eén groep moet één meisje tellen en de andere groep twee meisjes.
Die groep van één meisje kan samengesteld worden op 3 manieren (of C31).
Dit is de eerste deelbeslissing.
De tweede deelbeslissing is : welke jongens ga ik bij dat meisje zetten ?
Dit kan gebeuren op C53 = C54 = 5.4/2 = 10 manieren (3 jongens uit 5 kiezen om
bij dat ene meisje te zetten want je moet een groep van 4 personen maken)
De samengestelde beslissing kan dus gebeuren op 3×10 = … manieren.