|   | A.  \(\boldsymbol {\sqrt x} \) | 
|---|
| B.  \(\boldsymbol {x^2}\) | 
| C.  \(\large \boldsymbol {\frac {\sqrt x} {2}}\) | 
| D.  \(\large \boldsymbol { \frac{\sqrt[4]{x}}{x}}\) | 
| E.  \(\large \boldsymbol { \frac{\sqrt[4]{x^3}}{x}} \) | 
[ 4-3224 - op net sinds 9.11.14-(E)-30.10.2023 ]
Translation in   E N G L I S H  
  
|   | A.   \(\boldsymbol {\sqrt x} \) | 
|---|
| B.   \(\boldsymbol {x^2}\) | 
| C.   \(\large \boldsymbol {\frac {\sqrt x} {2}}\) | 
| D.   \(\large \boldsymbol { \frac{\sqrt[4]{x}}{x}}\) | 
| E.   \(\large \boldsymbol { \frac{\sqrt[4]{x^3}}{x}} \) | 
  
Oplossing - Solution
	
\(\small\sqrt[4]{81}=3\quad want \quad 3.3.3.3=81 \quad maar\;  ook: \sqrt[4]{81}=\sqrt{\sqrt{81}}=\sqrt{9}=3 \)
1ste manier :
 
\(\large
\frac{1}{\sqrt{\sqrt{x}}}=\frac{1}{\sqrt[4]{x}}=\frac{\sqrt[4]{x^3}}{\sqrt[4]{x}.\sqrt[4]{x^3}}=
\frac{\sqrt[4]{x^3}}{\sqrt[4]{x^4}}=\frac{\sqrt[4]{x^3}}{x} 
\)
2de manier :
\(\large
\frac{1}{\sqrt{\sqrt{x}}}=\frac{1.\sqrt{\sqrt{x}}}{\sqrt{\sqrt{x}}.\sqrt{\sqrt{x}}}=\frac{\sqrt{\sqrt{x}}}{\sqrt x}=
\frac{\sqrt{\sqrt{x}}.\sqrt x}{\sqrt x.\sqrt x}=\frac{\sqrt[4]{x}.\sqrt[4]{x^2}}{x}=\frac{\sqrt[4]{x^3}}{x}
\) 
