|
De standaardafwijking
van n waarnemingsgetallen x1, x2, x3, ..., xn wordt (mét de correctie van GAUSS) gedefinieerd als ( \(\boldsymbol{\bar x }\) = gemiddelde) |
A. | \(\scriptsize\boldsymbol{\frac {1} {n-1}\sqrt{\displaystyle\sum_{i=1}^{n}(x_i-\bar x)^2 }}\) |
|---|---|---|
| B. | \(\scriptsize\boldsymbol{\frac {1} {n+1}\sqrt{\displaystyle\sum_{i=1}^{n}(x_i-\bar x)^2 }}\) | |
| C. | \(\scriptsize\boldsymbol{\sqrt{\frac {1} {n-1}\displaystyle\sum_{i=1}^{n}(x_i-\bar x)^2 }}\) | |
| D. | \(\scriptsize\boldsymbol{\sqrt{\frac {1} {n+1}\displaystyle\sum_{i=1}^{n}(x_i-\bar x)^2 }}\) | |
| E. | \(\scriptsize\boldsymbol{\sqrt{\frac {1} {n-1}(x_i-\bar x)^2 }}\) |
[ 6-3112 - op net sinds 25.7.2020-()-2.11.2023 ]
|
IN CONSTRUCTION |
|---|