| | | |
| | | |
| | | |
Een parkeerterrein bevat twaalf parkeerplaatsen, naast elkaar gelegen.
Acht auto's parkeren zich aldaar, waarbij hun plaats bij loting bepaald wordt.
Wat is de kans dat de vier nog resterende plaatsen naast elkaar liggen ? |
A. \(\large\boldsymbol{\frac{9}{C_{12}^8}}\) |
---|---|
B. \(\large\boldsymbol{\frac{8}{V_{12}^8}}\) | |
C. \(\large\boldsymbol{\frac{8}{V_{12}^4}}\) | |
D. \(\large\boldsymbol{\frac{V_{12}^4}{V_{12}^8}}\) | |
E. \(\large\boldsymbol{\frac{C_{12}^4}{V_{12}^8}}\) | |
F. \(\large\boldsymbol{\frac{9}{V_{12}^8}}\) |
[ 6-3048 - op net sinds 12.6.11-(E)-26.7.2024 ]
Twelve parking spaces for cars are next to each other.
Eight drivers park their car in one of the twelve places (the place is designated at random). What is the probability that the four remaining parking spaces are adjacent ? |
A. \(\boldsymbol{\frac{9}{_{12}C_8}}\) |
---|---|
B. \(\boldsymbol{\frac{8}{_{12}P_8}}\) | |
C. \(\boldsymbol{\frac{8}{_{12}P_4}}\) | |
D. \(\boldsymbol{\frac{_{12}P_4}{_{12}P_8}}\) | |
E. \(\boldsymbol{\frac{_{12}C_4}{_{12}P_8}}\) | |
F. \(\boldsymbol{\frac{9}{_{12}P_8} }\) |