Als   f (x) = ln x
dan is   \( \boldsymbol {\frac {f(x+h)\,-\,f(x)}{h}} \)
gelijk aan

( x >0, h >0)
A.  \(\large\boldsymbol{D\ln x \quad[=f'(x)] }\)
B.  \(\large\boldsymbol{\ln (1\,+\,\frac 1x)^h }\)
C.  \(\large\boldsymbol{\ln (1\,+\,\frac 1x)^{\frac 1h} }\)
D.  \(\large\boldsymbol{\frac 1h\ln(1\,-\,\frac 1h) }\)
E.  \(\large\boldsymbol{\ln(1\,+\,\frac xh) - \ln \frac xh }\)
A    B    C    D    E

[ 6-2956 - op net sinds 25.12.01-(E)-30.10.2023 ]

Translation in   E N G L I S H

If   f(x) = ln x

then   \( \boldsymbol {\frac {f(x+h)\,-\,f(x)}{h}} \)
is equal to

( x >0, h >0)
A.   \(\boldsymbol{D\ln x \quad[=f'(x)] }\)
B.   \(\boldsymbol{\ln (1\,+\,\frac 1x)^h }\)
C.   \(\boldsymbol{\ln (1\,+\,\frac 1x)^{\frac 1h} }\)
D.   \(\boldsymbol{\frac 1h\ln(1\,-\,\frac 1h) }\)
E.   \(\boldsymbol{\ln(1\,+\,\frac xh) - \ln \frac xh }\)

Oplossing - Solution

gricha