Als f (x) = ln x dan is \( \boldsymbol {\frac {f(x+h)\,-\,f(x)}{h}} \) gelijk aan ( x >0, h >0) |
A. \(\large\boldsymbol{D\ln x \quad[=f'(x)] }\) |
---|---|
B. \(\large\boldsymbol{\ln (1\,+\,\frac 1x)^h }\) | |
C. \(\large\boldsymbol{\ln (1\,+\,\frac 1x)^{\frac 1h} }\) | |
D. \(\large\boldsymbol{\frac 1h\ln(1\,-\,\frac 1h) }\) | |
E. \(\large\boldsymbol{\ln(1\,+\,\frac xh) - \ln \frac xh }\) |
[ 6-2956 - op net sinds 25.12.01-(E)-30.10.2023 ]
If f(x) = ln x then \( \boldsymbol {\frac {f(x+h)\,-\,f(x)}{h}} \) is equal to ( x >0, h >0) |
A. \(\boldsymbol{D\ln x \quad[=f'(x)] }\) |
---|---|
B. \(\boldsymbol{\ln (1\,+\,\frac 1x)^h }\) | |
C. \(\boldsymbol{\ln (1\,+\,\frac 1x)^{\frac 1h} }\) | |
D. \(\boldsymbol{\frac 1h\ln(1\,-\,\frac 1h) }\) | |
E. \(\boldsymbol{\ln(1\,+\,\frac xh) - \ln \frac xh }\) |