laat zich
vereenvoudigen
tot
A.   \(\boldsymbol{\frac{1}{\sin\alpha} }\)
B.   \(\boldsymbol{\frac{1}{\cos\alpha} }\)
C.   \(\boldsymbol{\frac{1}{\cos^2\alpha} }\)
D.  \(\boldsymbol{\frac{1}{\sin \alpha\,\cdot\,\cos\alpha} }\)
E.  \(\boldsymbol{\sin\alpha\cdot\cos\,\alpha }\)
F.  \(\boldsymbol{\frac{1}{\sin \alpha\,+\,\cos \alpha} }\)
G.  \(\boldsymbol{\sin\alpha+\cos\alpha }\)
A   B   C   D   E   F   G

[ 6-2651 - op net sinds .2.15-(E)-4.11.2024 ]

Translation in   E N G L I S H

... can be symplified to ...

Oplossing - Solution

\(\large \tan \alpha +\frac{\cos \alpha }{1+\sin \alpha }= \frac{\sin \alpha }{\cos \alpha } +\frac{\cos \alpha }{1+\sin \alpha }= \frac{\sin \alpha (1+\sin \alpha)+\cos^2 \alpha }{\cos \alpha \cdot (1+\sin \alpha )}\\ \large= \frac{\sin \alpha +\sin^2 \alpha + \cos^2 \alpha }{\cos \alpha \cdot (1+\sin \alpha )}=\frac{\sin \alpha +1}{{\cos \alpha \cdot (1+\sin \alpha )}}=\frac{1}{\cos \alpha }\)