De limiet van



is gelijk aan 0
als
A.   x ↦ minoneindig
B.   x ↦ plusoneindig[
C.   x ↦ +3
D.   x ↦ +4
E.   x ↦ − 4
A    B    C    D    E

[ 5-2513 - op net sinds 23-8-00-(E)-4.11.2023 ]

Translation in   E N G L I S H

The limit of


is equal to 0
if
A.  x ↦ minoneindig
B.  x ↦
C.  x ↦ +3
D.  x ↦ +4
E.  x ↦ − 4

Oplossing - Solution

\(A. \rightarrow \displaystyle\lim_{x\to-\infty}\frac{x^2+x-12}{x\,-\,3}=\lim_{x\to-\infty}\frac{x^2}{x}=\lim_{x\to-\infty}x=-\infty\)
\(B. \rightarrow \displaystyle\lim_{x\to+\infty}\frac{x^2+x-12}{x\,-\,3}=\lim_{x\to+\infty}\frac{x^2}{x}=\lim_{x\to+\infty}x=+\infty\)
\(C. \rightarrow \displaystyle\lim_{x\to+3}\frac{x^2+x-12}{x\,-\,3}=\lim_{x\to+3}\frac{(x-3)(x+4)}{x-3}=\lim_{x\to+3}(x+4)=7\)
\(D. \rightarrow \displaystyle\lim_{x\to+4}\frac{x^2+x-12}{x\,-\,3}=\frac81=8\)
\(E. \rightarrow \displaystyle\lim_{x\to-4}\frac{x^2+x-12}{x\,-\,3}=\lim_{x\to-4}\frac{(x-3)(x+4)}{x\,-\,3}=\lim_{x\to-4}(x+4)=0\)