A.   1
B.   2
C.   3
D.   0
E.   plusoneindig
A    B    C    D   E

[ 5-2389 - op net sinds 16.6.12-(E)-6.11.2024 ]

Translation in   E N G L I S H


A.  1
B.  2
C.  3
D.  0
E.  

Oplossing - Solution

1ste manier : zonder de regel van de L'Hospital
\(\displaystyle\lim_{x\to 0}\frac{1\!-\cos x\,+\,x^2}{1\:-\:\cos x}=\lim_{x\to 0}\frac{1\!-\!\cos x}{1\!-\!\cos x}+\displaystyle\lim_{x\to 0}\frac{x^2}{1-\cos x}=1+\lim_{x\to 0}\frac{x^2(1+\cos x)}{(1-\cos x)(1+\cos x)}\\=1+\displaystyle\lim_{x\to 0}\frac{x^2(1+\cos x)}{1-\cos^2x}=1+\displaystyle\lim_{x\to 0}\frac{1+\cos x}{\frac{\sin^2x}{x^2}}=1+\displaystyle\lim_{x\to 0}\frac{1+\cos x}{\frac{\sin x}{x}.\frac{\sin x}{x}}=1+\frac{1+\cos 0}{1.1}\\=1+2=3\)
2de manier : met de regel van de L'Hospital
\(\displaystyle\lim_{x\to 0}\frac{1\!-\cos x\,+\,x^2}{1\:-\:\cos x}=\lim_{x\to 0}\frac{1\!-\!\cos x}{1\!-\!\cos x}+\lim_{x\to 0}\frac{x^2}{1-\cos x}\left(=1+\frac00\right)\overset{H}{=}1+\lim_{x\to 0}\frac{2x}{0+\sin x}\\=1+2.\lim_{x\to 0}\frac{x}{\sin x}=1+2.1=3\)
3de manier : met de regel van de L'Hospital
\(\displaystyle\lim_{x\to 0}\frac{1\!-\cos x\,+\,x^2}{1\:-\:\cos x}\left(=\frac00\right)\overset{H}{=}\lim_{x\to 0}\frac{\sin x+2x}{\sin x}=1+2.\lim_{x\to 0}\frac{x}{\sin x}=1+2.1=3\) 
gricha