|
De afgeleide van het product \(\boldsymbol{x\sqrt{x^2+1} }\)
is gelijk aan |
A. \(\boldsymbol{\frac {x} {\sqrt{x^2\,+\:1}} }\) |
|---|---|
| B. \(\boldsymbol{\frac {2x^2+\,1} {\sqrt{x^2\,+\:1}} }\) | |
| C. \(\boldsymbol{\frac {x^2+\,x\,+\,1} {\sqrt{x^2\,+\:1}} }\) | |
| D. \(\boldsymbol{\frac {4x^2+\,5} {4\sqrt{x^2\,+\:1}} }\) | |
| E. \(\boldsymbol{\frac {3x^2+\,1} {2\sqrt{x^2\,+\:1}} }\) | |
| F. \(\boldsymbol{\frac {2x^2+\,x\,+\,2} {2\sqrt{x^2\,+\:1}} }\) |
[ 5-1703 - op net sinds 2.7.07-(E)-25.8.2025 ]
|
The derivative
of the product \(\boldsymbol{x\sqrt{x^2+1} }\) is equal to |
A. \(\boldsymbol{\frac {x} {\sqrt{x^2\,+\:1}} }\) |
|---|---|
| B. \(\boldsymbol{\frac {2x^2+\,1} {\sqrt{x^2\,+\:1}} }\) | |
| C. \(\boldsymbol{\frac {x^2+\,x\,+\,1} {\sqrt{x^2\,+\:1}} }\) | |
| D. \(\boldsymbol{\frac {4x^2+\,5} {4\sqrt{x^2\,+\:1}} }\) | |
| E. \(\boldsymbol{\frac {3x^2+\,1} {2\sqrt{x^2\,+\:1}} }\) | |
| F. \(\boldsymbol{\frac {2x^2+\,x\,+\,2} {2\sqrt{x^2\,+\:1}} }\) |