De (gele) oppervlakte die de kromme met vergelijking y2 = x2 − x4 omsluit is gelijk aan |
A. \(\boldsymbol{2\int_{0}^{1}(x^2-x^4)\: dx}\) |
---|---|
B. \(\boldsymbol{2\pi\int_{0}^{1}(x^2-x^4)\: dx }\) | |
C. \(\boldsymbol{4\int_{0}^{1}\sqrt{x^2-x^4}\: dx}\) | |
D. \(\boldsymbol{2\int_{0}^{1}\sqrt{x^2-x^4}\: dx}\) | |
E. \(\boldsymbol{4\pi\int_{0}^{1}(x^2-x^4)\: dx }\) |
[ 6-0233 - op net sinds 4.1.01-(E)-25.11.2024 ]
You see the curve with equation y2 = x2 − x4 What is the area of the yellow part ? |
A. \(\boldsymbol{2\int_{0}^{1}(x^2-x^4)\: dx}\) |
---|---|
B. \(\boldsymbol{2\pi\int_{0}^{1}(x^2-x^4)\: dx }\) | |
C. \(\boldsymbol{4\int_{0}^{1}\sqrt{x^2-x^4}\: dx}\) | |
D. \(\boldsymbol{2\int_{0}^{1}\sqrt{x^2-x^4}\: dx}\) | |
E. \(\boldsymbol{4\pi\int_{0}^{1}(x^2-x^4)\: dx }\) |