| Te bewijzen : | Dn (x.ex) = (x + n).ex |
| m.a.w. | f (x) = x.ex ⇒ f (n) (x) = (x + n).ex |
| Bewijs : | |
| Deel I |
Voor de kleinste n-waarde, nl. 1 is D1 (x.ex) = D (x.ex) = ex + x.ex = (x + 1).ex → O.K. |
| Deel II | Gegeven : | Dk (x.ex) = (x + k).ex ( I.H.) |
| Te bewijzen: | Dk+1 (x.ex) = (x + k + 1).ex | |
| Bewijs : | LL = Dk+1 (x.ex) = = D (Dk (x.ex)) | |
| __ = D ((x + k).ex)) | ||
| __ = ex + (x + k).ex | ||
| __ = ex.(1 + x + k) | ||
| __ = (x + k + 1).ex = RL Q.E.D. |