| Te bewijzen : | 5n+1 + 3n+1 > 22n+1 |
| Bewijs : | |
| Deel I |
Voor de kleinste n-waarde, nl. 0 is LL = 5 + 3 = 8 (de eerste term) RL = 21 = 2 LL > RL → O.K. |
| Deel II | Gegeven : | 5k+1 + 3k+1 > 22k+1 ( I.H.) |
| Te bewijzen: | 5k+2 + 3k+2 > 22k+3 | |
| Bewijs : | LL = 5k+2 + 3k+2 = 5.5k+1 + 3.3k+1 | |
| __ = 3.5k+1 + 3.3k+1 + 2.5k+1 | ||
| __ = 3.(5k+1 + 3k+1) + 2.5k+1 | ||
| __ > 3.22k+1 + 2.5k+1 | ||
| __ > 3.22k+1 + 2.4k+1 | ||
| __ > 2.22k+1 + 2.22k+2 | ||
| __ = 22k+2 + 2.22k+2 | ||
| __ = 3.22k+2 | ||
| __ > 2.22k+2 | ||
| __ = 22k+3 = RL Q.E.D. |