Te bewijzen : | 1 + (1+3.1) + (1+3.2) + ... + (1 + 3n) = (n+1)(3n+2) |
m.a.w. | |
Bewijs : | |
Deel I |
Voor de kleinste n-waarde, nl. 0 is LL = 1 (de eerste term) RL = (0+1)(0+2) = 1 LL = RL → O.K. |
Deel II | Gegeven : | 1 + (1+3.1) + (1+3.2) + ... + (1 + 3k) = (k+1)(3k+2) ( I.H.) |
Te bewijzen: | 1 + (1+3.1) + (1+3.2) + ... + (1 + 3k) + (1 + 3k+3) = (k+2)(3k+5) | |
Bewijs : | LL = (k+1)(3k+2) + (3k+4) | |
__ = ( 3k²+2k+3k+2 + 6k+8 ) | ||
__ = (3k² + 11k + 10) [ V(−2) = 12 − 22 + 10 = 0 → k+2 deler ] | ||
__ = (k + 2)(3k + 5) = RL Q.E.D. |