Te bewijzen : | 1.2.3 + 2.3.4 + 3.4.5 + ... + n(n+1)(n+2) = n(n+1)(n+2)(n+3) |
m.a.w. | |
Bewijs : | |
Deel I |
Voor de kleinste n-waarde, nl. 1 is LL = 1.2.3 = 6 (de eerste term) RL = .1.(1+1).(1+2).(1+3) = .2.3.4 = 6 LL = RL → O.K. |
Deel II | Gegeven : | 1.2.3 + 2.3.4 + 3.4.5 + ... + k(k+1)(k+2) = k(k+1)(k+2)(k+3) ( I.H.) |
Te bewijzen: |
1.2.3 + 2.3.4 + 3.4.5 + ... + k(k+1)(k+2) + (k+1)(k+2)(k+3) = (k+1)(k+2)(k+3)(k+4) | |
Bewijs : | LL = 1.2.3 + 2.3.4 + 3.4.5 + ... + k(k+1)(k+2) + (k+1)(k+2)(k+3) | |
__ = k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3) | ||
__ = [ k(k+1)(k+2)(k+3) + 4(k+1)(k+2)(k+3) ] | ||
__ = (k+1)(k+2)(k+3)(k+4) | ||
__ = RL Q.E.D. |