Als   tan(α + β) = 2 en   tan α = 1op2, dan is  tan β   gelijk aan A.   \(\frac32\)
B.   \(\frac34\)
C.   \(-\frac34\)
D.   \(\frac43\)
E.   \(\frac12\)
    A    B    C    D    E

[ 5-A111 - op net sinds 1.1.2026-(E)- ]

Translation in   E N G L I S H

IN CONSTRUCTION

Oplossing - Solution

1ste manier :
\(2=\tan(\alpha+\beta)=\frac{\tan \alpha+\tan\beta}{1-\tan\alpha-\tan\beta} =\frac{\frac12+\:\tan\beta}{1-\frac12\tan\beta}=\frac{1\,+\,2\tan\beta}{2\,-\,\tan\beta}\)
Hieruit volgt :  4 − 2.tan β = 1 + 2.tan β   zodat
3 = 4.tan β  ⇔  tan β = \(\frac43\)
2de manier :

 ⇔ α + β = 90° − α + k.180°  ⇔  90° − β = 2.α − k.180°


3de manier :
GWB