Als tan(α + β) = 2 en tan α =
, dan is tan β gelijk aan
A. \(\frac32\)
B. \(\frac34\)
C. \(-\frac34\)
D. \(\frac43\)
E. \(\frac12\)
[ 5-A111 - op net sinds 1.1.2026-(E)- ]
Translation in E N G L I S H
IN CONSTRUCTION
Oplossing - Solution
1
ste
manier :
\(2=\tan(\alpha+\beta)=\frac{\tan \alpha+\tan\beta}{1-\tan\alpha-\tan\beta} =\frac{\frac12+\:\tan\beta}{1-\frac12\tan\beta}=\frac{1\,+\,2\tan\beta}{2\,-\,\tan\beta}\)
Hieruit volgt : 4 − 2.tan β = 1 + 2.tan β zodat
3 = 4.tan β ⇔ tan β = \(\frac43\)
2
de
manier :
⇔ α + β = 90° − α + k.180° ⇔ 90° − β = 2.α − k.180°
3
de
manier :